高级检索
姚携菲, 张金星. 磁电多铁性材料的宠儿:铁酸铋(BiFeO3)研究进展的十年回顾[J]. 物理, 2014, 43(04): 227-235. DOI: 10.7693/wl20140402
引用本文: 姚携菲, 张金星. 磁电多铁性材料的宠儿:铁酸铋(BiFeO3)研究进展的十年回顾[J]. 物理, 2014, 43(04): 227-235. DOI: 10.7693/wl20140402
YAO Xie-Fei, ZHANG Jin-Xing. Decade of advances in the most desired magnetoelectric multiferroic material——BiFeO3[J]. PHYSICS, 2014, 43(04): 227-235. DOI: 10.7693/wl20140402
Citation: YAO Xie-Fei, ZHANG Jin-Xing. Decade of advances in the most desired magnetoelectric multiferroic material——BiFeO3[J]. PHYSICS, 2014, 43(04): 227-235. DOI: 10.7693/wl20140402

磁电多铁性材料的宠儿:铁酸铋(BiFeO3)研究进展的十年回顾

Decade of advances in the most desired magnetoelectric multiferroic material——BiFeO3

  • 摘要: 近十几年来,由于对新一代高性能(低能耗、高存储密度、高读写速度)电子功能器件的需求,多铁性材料特别吸引人们的关注。在这些多铁性化合物中,铁酸铋(BiFeO3,简写为BFO)具有高的铁电居里温度和高的反铁磁转变温度,是目前最有应用前景的多铁性材料之一。文章介绍了BFO的晶体结构、铁电极化结构以及反铁磁自旋结构,探讨了在它的基态和高应变状态下,极化与自旋是如何强耦合在一起的。在此基础上,进一步探讨了利用铁电/反铁磁BFO基体系来实现强磁电耦合效应(特别是在低维系统如异质结界面、畴壁或相界中)。文章还对BFO基纳米复合自组装结构中的磁电耦合做了简单介绍。通过对BFO这一多铁性模型体系的研究,可以帮助人们更好地认识铁性材料中衍生出的新奇量子现象,从而利用高等外延生长技术开发和设计新型人造超结构来实现材料的电性、磁性和弹性之间的耦合。

     

    Abstract: Due to the upcoming demands of the next-generation electronic devices with low-energy consumption, high storage density and high write-read speed, multiferroics have attracted great interest for the last decades. Among the natural and artificial compounds, BiFeO3 (BFO) is one of the most promising materials due to its high ferroelectric and antiferromagnetic transition temperature. In this article, we first give an introduction about crystalline, polar and spin structures of BFO, and how the spin and polar can couple with each other in the ground state and highly strained states. Based on this, we discuss the strong magnetoelectric coupling in BFO-related systems at reduced dimensions (e.g. heterointerfaces, domain walls, and phase boundaries). Finally,we briefly describe the magnetoelectric coupling in self-assembly BFO-based nanocomposites.With this multiferroic model system we are able to better understand the newly observed quantum phenomena in ferroic materials, and thus design and synthesize artificial superstructures by using advanced epitaxial techniques.The reversible control of the electric, magnetic and elastic order parameters is promising for possible applications in future electronic and magnetoelectronic devices.

     

/

返回文章
返回