高级检索

速度扫描层析技术及其在室温量子模拟中的应用

Velocity scanning tomography and its application in room-temperature quantum simulation

  • 摘要: 在室温原子体系中,热运动引起的多普勒效应会导致能级的非均匀展宽,传统上被视为阻碍量子调控的经典噪声。文章介绍了一种原子速度扫描层析技术,可对多普勒展宽原子进行速度分辨的光谱学测量,从而在室温条件下实现量子模拟。在这项技术中,当原子在周期性耦合光场中运动时,其缀饰态会积累几何相位,并表现为反常多普勒频移,通过选择性地探测不同速度原子的频移,建立了由几何相位测量到拓扑不变量提取的完整技术路径。由此,原子热运动不再是噪声,而被转化为可调控的资源,用于超辐射晶格量子模拟。这一方法为室温原子中的拓扑物理研究提供了新思路并具有广泛适用性,可为量子传感、量子存储及量子功能器件的研发提供关键支撑。

     

    Abstract: In room-temperature atomic systems, thermal motion induces Doppler broadening of energy levels, which has traditionally been regarded as classical noise hindering quantum control. Here we introduce the velocity scanning tomography technique that enables velocity-resolved spectroscopy of Doppler-broadened atoms, allowing quantum simulation under ambient conditions. We show that when atoms move in a spatially-periodic optical field, their dressed states acquire a geometric phase that appears as an anomalous Doppler shift. By selectively probing the shifts of atoms at different velocities, we establish the route from geometric-phase measurement to the extraction of topological invariants. Thus, thermal motion is no longer noise but becomes a controllable resource for quantum simulation in super-radiance lattices. This approach signifies a new avenue for investigating topological physics in room-temperature atomic systems, and provides a broad basis for the development of quantum sensing, quantum memory and quantum devices.

     

/

返回文章
返回